On the Use of Complementary Spectral Features for Speaker Recognition
نویسندگان
چکیده
The most popular features for speaker recognition are Mel frequency cepstral coefficients (MFCCs) and linear prediction cepstral coefficients (LPCCs). These features are used extensively because they characterize the vocal tract configuration which is known to be highly speaker-dependent. In this work, several features are introduced that can characterize the vocal system in order to complement the traditional features and produce better speaker recognition models. The spectral centroid (SC), spectral bandwidth (SBW), spectral band energy (SBE), spectral crest factor (SCF), spectral flatness measure (SFM), Shannon entropy (SE), and Renyi entropy (RE) were utilized for this purpose. This work demonstrates that these features are robust in noisy conditions by simulating some common distortions that are found in the speakers’ environment and a typical telephone channel. Babble noise, additive white Gaussian noise (AWGN), and a bandpass channel with 1 dB of ripple were used to simulate these noisy conditions. The results show significant improvements in classification performance for all noise conditions when these features were used to complement the MFCC and ΔMFCC features. In particular, the SC and SCF improved performance in almost all noise conditions within the examined SNR range (10–40 dB). For example, in cases where there was only one source of distortion, classification improvements of up to 8% and 10% were achieved under babble noise and AWGN, respectively, using the SCF feature.
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملEfficient Training of GMM Based Speaker Recognition System
Automatic speaker recognition (ASR) is based on speech feature vectors, models, and classifiers. To improve the speaker recognition performance, we must affect at least one of these modules. In this paper we propose to use subband spectral centroids (SSCs) as a complementary features with the traditional MFCC features, and a new GMM training algorithm, with the ultimate goal to search the bette...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008